SYNCHRONIZATION ISSUES IN PROTOCOL TESTING

Behcet SARIKAYA
McGill University
School of Computer Science

Montreal, P.Q. Canada, H3A 2Ké

ABSTRACT
Protocol testing for the purpose of
certifying the 1mplementation’s adherence to

the protocol specification can be done with an
architecture which includes a remote Tester
and a local Responder processes generating
specific imput stimull called test sequences.
It 1s possible to adapt test sequence genera-
tion methods of finite state machines, namely
transition tour, characterizatlion and checking
sequence methods to generate test sequences
for protocols specified as iIncoumplete finite
state machines. For certain test sequences,
the Tester or Responder processes are forced

to consider the timing of an dnteraction in
which they have not taken part; these test
sequences are called nonsynchronizable. The

three test sequence generation algorithms are

modified to obtain gynchronizable test
sequences. Checking the protocol designs for
intrinsic synchronization problems 1s also
discussed.
1. INTRODUCTIOHW

Protocol implementation assessment
methods are used to determine that a par-
ticular protocol implementation (in the
following simply called "Implementation " or
"I") adhereszs to the apecification of the

protocol. There seems to be general agreement
on a general architecture to be used for test-

ing one or more layers of the O0SI protocol
hierarchy{Rayn 82, BoCe 82, INWG 82]: A remote
tester(alaso called "Active Tester', "Tester”

or "T" {inm short) and a supplementary local
tester (also called "Test Responder",
"Responder" or "R" in short) directly con-

nected to the implementation, and playing the

role of a protocol.

Permission to copy without fze all or part of this material.is granted
provided that the copies are not made or distributed for dm?,ct
commercial advantage, the ACM copyright notice and the title Of. the
publication and its date appear, and notice is given .lhat copying is by
permission of the Association for Computing Machmle‘ry‘ To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-089-3/83/0300-0121 $00.75

124

Gregor v. BOCHMANN

Université de Montréal
Département d'I.R.0.

Montréal, P.Q. Canada, H3C 3J7

This paper addresses the
selecting test sequences
implementation assessment.

state machine models for protocol specifica-
tion, methods developed for finite state
machines 1implemented in hardware [Koha 78,
NaTs 81] and software [Chow 78] can be
applied to the selection of test sequences for
protocols, as reported earlier[SaBo 82]. In

the context of the proposed test architecture,

problem of
for protocol
Assuming finite

however, certain problems of synchronization
between the tester and the responder may
arlse.

The paper first gives a short review of
the straightforward application [SaBo 82) of
three finite state test sequence selection
methods(NaTs 81, Chow 78, Koha 78] to protocol
implementation assessment, and then explains
in section 2 the nature of the possible
synchronization problems. Section 3 discusses
algorithms for selecting test sequences
without synchronization problems, which are
called in the following synchronizable. Some
protocol examples are also given for which no
complete synchronizable test sequence exists.

2. Synchronization Problems of Test Sequences

Test sequences reported 1in [SaBo 82]
were generated with the assumption that Tester
and Responder reside on the same machine. In
the architecture of figure 1la, Tester and
Responder functions are distributed over two
sltes and the two processes progress
asynchronously. It 1is assumes 1in this paper
that they are synchronized with one another
only indirectly through the interactions with
the Implementation under test.

This section contains a brief review of
test sequence selection methods and theoreti-

cal considerations on the detection of
synchronization problems.
2.1. Test Sequence Generation for Protocols
2.1.1s Transition Tour Method

An Input sequence starting with the
initial state and covering all transitions
defined in the protocol specification is

called a transition tour{NaTs 81] (usually the

gpecification defines an incompletely
specified machine as in figure 2). A transi-
tion tour for the Transport protocol {IS0 TP]
is shown 1in figure 3a.

2.1.2.[W=-method]-Characterization Sequences

A characterization set (also called
W-set) of a finite state machine counsists of
input sequences that can distinguish between
the behaviors of every palr of states, . A

set P consists of input sequences that take
the machine to any of 1its states from the
initial state, also 1t contains all these
sequences concatenated with all possible

inputs from these states. A characterization
sequence 1s the concatenation of the two sets
of sequences, P and W. Each sequence in P. W
(. stands for concatenation) {1s applied
starting with the i{initial state, hence a
return to initial state 18 necessary after
each sequence. These transfer sequences are
called regets. (The set P defines a testing
tree).
2.1.3. {D-Method]-Checking Sequences

A distinguishing sequence (in short DS)
is an input sequence for which the output
sequence produced by the machine is different
for each initial state. A checking sequence
consists of two parts: first a state recogni-
tion part and the a tramsition checking part.
The state recognition part starts with the
initial state and displays the response of the
machine to the sequence DS. DS for the pur=-
pose of identifying the states both prior and
after the application of DS. In the transi-
tion checking part the graph defined as:

TC = Uxi- DS

where U stands for set union and the x, are
the machine transitions ¢to be checked, 1is
traversed. Transfer sequences are included in
both parts also in between the parts whenever
necessary to provide continuilty.

2.2. Basic Interaction Model

The Implementation, Tester and
Responder, shown in figure la, are modelled as
processes each represented as a finite-state
machine that communicate by exchanging mes-
sages through FIFO queues, as shown in figure
1b. The Tester and Responder may send or
recelve a message to/from the Implementation
when they execute a state transitiom. I can

recelve a message from T or R when 1t executes
a gtate transition or 1t can send a message to
one or both of T or R after receiving a mes-
sage from one of them. The system has a
predefined initial state with all queues empty
and all three processes 1in thelr initial
states.
2.2.1. Basic Interaction Sequences (BIS)

A sequence of transitions of the
Implementation, Tester and Responder defines a
transition sequence for each process. In the
following, abstraction 1is made from the par-

122

ticular transitions, only the Iinformation
whether an input is received (R) or an output
is sent (S8) 18 recorded, and over which FIFO
queue. Such an abstracted sequence is called
bagic transition [RuWe 82]. The individual

interactions, 1.e. gends and receives, are
called basic interactiomns. For example the
basic interactlon corresponding to the transi-
tion 1in state 1 wunder input CR (connect-
request PDU) of the protocol of figure 2 is to
recelve a message through Q ~-from T and send
a message through Q to R and hence 1is_sajid
to correspond to the baslc interaction R™"S

All basic interactions of process I under this
model are enumerated in Table la. It is noted
that some of the entries in Table la (namely

RIR, RIRSIR and RIRSIRSIT)

the Transport protocol- of figure 2,
may occur in other cases.

do mnot occur for
but they

Test sequences discussed in this section
are composed of transitions of process I each
starting in the 1initial state. Hence a test
sequence, such as the one in figure 3a, can be
easily converted 1into a corresponding basic
interaction sequence (BIS) by replacing each
transition by 1its corresponding basic interac-
tions.

From a given test sequence, it 1s pos-
sible to obtain BISes for T and R as well.
Since there might be some execution steps of I

that do not 1nvolve any interaction with
either T or R, these steps wlll be shown as ~
in the corresponding basic interaction

sequence. The BIS for T corresponding to a
given BIS for I can be obtained from the lat=
ter by replacing an R with gTt , and an §

with R and an execution step not involving
"T" by “. A BIS for R can be obtained in a
similar way.
2.3. Synchronization

In the following, a synchronization

problem in the test sequence of figure 3a 1is
first discussed as an example, and a theorem
with its corollary is stated and proved.

BISes for the three processes of figure
1b corresponding to the first eigth transi-
tions of the test sequence of figure 3a are as
follows:

*
I :RITSIRRIRSITRITRITRITRITSIRRITSITRIRSIT
T STI RTISTISTISTISTI STIRTI RTI
R : RRISRI ~ A A RRIA SRI
A scenarlo of the execution of these

BISes is as follows:Since the BIS for T starts
with an 8, process T starts the testing. R
recelives a message from 1 subsequent to the
megssage sent to I by T. It responds with
another message. Then T recelves a message
and sends four <consecutive messages. The
first three of these are 1ignored by I. R
receives a message as a response to the last

one. T sends and receives a message. The
next action, by R, 1s to send a message
{marked by "s¢'" above). It is difficult to

since

~

this case,
last step (the

synchronlze the processes in
R did not take part in the
before the 8§ 1in the BIS for R indicates this
fact). A possible solution to this
synchronization problem would be for R to know
the time period of the last step and to wailt
that much before sending. However, this is
undesirable since real time constrains are
difficult to realize. An error 1in the timing
might cause the process I to make a different
transition than the one expected by the test
sequence, resulting in an unexpected response
from 1I. Another solution would be direct
synchronization between T and R; but this 1is

not foreseen in the testing architecture of
figure 1.
Theorem. Test sequences have synchronization

problems if the BISes for T and/or R have any
sends (S) preceeded by one or more “s.

Proof. Assume that the BIS for R has one S
preceeded by one or more “s. From Table 3a it
is easily seen that process 1 should have an
interaction with process T whenever there 1s a
~ 4in the BIS for R. Since R has no way of
knowing the duration of these local exchanges

R faces a synchronization problem. The proof
can be carried out similarly for T.
Corollary. During the testing with a

synchronizable test sequence, the interpreta-
tion of the responses of the implementation 1is
unambigious and simple.

This means that the ambigious situation where
the Implementation has at least one message in

both of its 1input queues 1s avoided by
synchronizable test sequences because of the
fact that vthe number of messages 1is _always
zero 1n one of the queues Q and QRI which

follows from the theorem.
2.4 Synchronizable Palrs of Transitlons

Two consecutive basic transitions of I
will be called a synchronizable pair of tran-

sitions 1f the second transitlion can follow
the first one without generating a
synchronization problem. For example R

followed by R
because in the
T, S

would violate synchronization
corresponding BIS for procesgs
would be preceeded by ~. Similarly RRE

and RTRSIR cannot be followed by RLIT or rRITgIT

or RITSITSIR. Also RIT and RITSIT cannot be

IR IR,IR

followed by R or R*7S
nonsynchronizable palrs of
listed in Table 1b.

or RIRSIRSIT

interactions

All
are

This concept 1s wuseful for checking
whether a given test sequence 1s synchroniz-
able. It 1is (necessary and) sufficient that
any two subsequent transitions of the sequence
correspond to a synchronizable pair of basic
transitions. The test sequences shown in
figures 3a were derived 1in [SaBo 82] without

123

concern for possible synchronization problems.
It is easily seen that they contain
synchronization problems, as 1ndicated by
"y's. The sequence of figure 3a contailns_two
violations, both of the type: RITgITRIRGIT
which is one of the pairs listed in Table 1b.
The characterization sequence given in [SaBo
82)] contains four violations of the same kind.
Also the checking sequence for the Transport
protocol given in [SaBo 82] has three viola-
tions of this type.

All the nonsynchronizable pairs of tran-
sitions of Table 1b could be encountered in
test sequences generated for real protocols
unless precautions are taken, as explained in
section 3.

2.5. Protocol Specifications with Intrinsic
Synchronization Problems

For certain protocol specifications, 1t

is 1impossible to avoid synchronization prob-
lems. Such a situation occurs 1in the case
that a transition p,; from state j to state k
is of one of the types
[State| p |State| Pj |State |
I S R >3 e > k|
(IR, RIRGIT =~ pIRGIR = pIRGIRGIT, 4 cacn

transition Py entering state j 1s of one of

the types [RIT, RITSIT]. Then each pair Pydg
{s a nonsynchronizable pair of transitions.
Therefore the execution of the transition p
implies a synchronization problem. We cal
such a transition mnonsychronizable. A dual
situation exists for the case that all py are

of one of the types [RIR, RIRSIR] and Pj of
(MY, RITSIT, RITIR RITGITGIR 4 yo ca11 a
state nonsynchronizable 1f it can only be

reached through nonsynchronizable transitions.
For example, the state k above 1is such a
state.

Protocol specifications having non-
synchronizable transitions and/or states are
called intrinsically nonsynchronizable. It isg
clear that any complete test sequence
generated for such specifications will carry
synchronization problems. By inspection it
can be seen that the Transport protocol of
figure 2 does not have any nonsynchronlzable
transitions hence it does not have any
intrinsic synchronization problems.

It has been shown that X.25 DTE protocol
[CCITT 81]) contains some nonsynchronizable
transitions.

3. Generatlon of Synchronizable Test Sequences

Each test sequence generation method
discussed in section 2 may give rise, for a
given protocol sgpecilfication, to different

test sequences depending on the way the method
is implemented. It is clear from the discus-
sion of section 2 that some of these sequences
are not applicable in the test architecture of
figure la because they violate the
synchronization rules. The different methods
¢an be adopted to generate only synchronizable

test sequences. These adaptations are
specific to each method, as explained below.
However, the specification should be checked

first to see 1f it 1is intrinsically non-
synchronizable. If not, one of the algorithus
described below may be applied to obtain a
synchronizable test sequence. The basic
approach for all these algorithms is to check
each new transition added to the sequence in
order to see whether 1t is synchronizable with
its predecessor. This check is based on Table
1b which 1lists all nonsynchronizable pairs of
transitions.

3.1. Transition Tours

Any graph traversal algorithm such as
the one given in [Tarj 72] can be modified to
obtaln a transition tour. Each transition to
be added to the sequence by the algorithm 1is
first checked whether it forms a synchroniz-
able pair together with the last transition of
the sequence (using Table 1lb). If it is not
synchronizable a different transition from the
present state 1s considered. If no suitable
transition exists from the present state, the
selection algorithm bactracks to the previous
state continuing the tour from there iIn a
different way. This process continues until
all the transitions of the machine are
covered. In general, 1t may be necessary to
deviate from the goal of obtaining minimum
length sequences.

Applying such an algorithm to the Trans-
port protocol, the transition tour of figure
3b 1s obtained. The length of this sequence
is 34, as in figure 2; in this case the length
is not increased.

3.2. CGCharacterization Sequences

Algorithms to find a W-set and to con-
struct a testing tree (and hence to calculate
P. W, without resets) are given in [Chai 81].
Any shortest path finding algorithm, such as
the one in [Even 79]}, can be used for deter-
mining the resets. Synchronizable charac-
terization sequences can be obtained in three
steps as follows:

In Step 1, all subsequences of P. W
(without resets) are checked for synchroniza-
tion problems using a '"subsequence checking
algorithm" which checks all pairs of consecu-
tive transitions in a sequence for
synchronization problems, using Table 1lb. 1If

a subsequence of P. W has synchronization
problems, the use of a different W set or
testing tree P may be considered, possibly

leading to longer sequences.

In Step 2, each subsequence of P. W is
completed by appending a synchronizable reset
sequence using a backtracking algorithm

124

similar to the for transition tours

explained above.

one

In Step 3 the subsequences obtained in
Step 2 are merged together to obtain a single
synchronizable test sequence. Any "concatena-
tion algorithm" could be used which puts the
subsequences in such an order that no
synchronization problem is generated.

characterization
protocol is

A synchronizable
sequence for the Transport
obtained from the same testing tree, contain-
ing 69 transitions, three more than the
sequence of [SaBo 82]. This is due to longer
reset sequemnces.

3.3. Checking Sequences
Ignoring the problem of synchronization,
an algorithm for finding a DS can be found in

[Koha 78}, and algorithms for state recogni-
tion and transition checking parts are
reported in [(Gone 70]). Shortest path algo-
rithms can be wused for finding transfer
sequences.

The following measures are proposed to
obtain synchronizable test sequences:
(a)A syncronizable DS must be found. In
general, it may not be a minimal one.
(b)The state recognition part obtained accord-
ing to [Gone 70] is checked using the "sub-
sequence checking algorithm" mentioned above.
In case of synchronization problems, changing
the transfer sequences should first be con-
sidered. The use of a different DS may also
be considered.
(c)The transition checking step 1is checked
with a two-part procedure. First each sub-
sequence x,. DS in the set TC as defined in
section 2 1s checked by the 'subsequence
checking algorithm'. If one of the tests
fails a different DS should be generated, 1if
it exists. In the second step, the transition

checking part as a whole 1is checked for
synchronization. In the case of synchroniza-
tion problems, a different order of the
subsequences and/or different transfer

sequences should be considered.
(d)Finally, the state recognition and transi-
tion checking parts are combined wusing an
appropriate transfer sequence.

checking sequence for
has been obtained con-
than the sequence

A synchronizable
the Transport protocol
taining 3 more transitions
reported In [SaBo 82].

4. SUMMARY and CONCLUSIONS

Test sequence generation methods (tran-

sition tours, We and D- methods) are
applicable to protocols specified as incom-
plete finite state machines. The transition
tour has a limited, the other methods have
full fault detection capabilities. The tran-
sition tour method 1s generally applicable,
the application of the other two methods

require certain conditions, i1.e. the protocol
possessing a W-set or DS, respectively.

With a remote testing architecture, as
shown in figure 1, the synchronization between
the Tester and Responder modules becomes an
issue. The design of these modules is
simplified 1f the selected test sequence does
not have any synchronization problems. Tt is
shown in section 3 that test sequences can be
checked for synchronization problems 1f each
interaction of a test sequence 1s associated
with Tester or Responder module. Moreover,
avoiding the synchronization problems relates

to the design of the protocol. A protocol
should be first checked for intrinsic
synchronization problems and modified if
necessary.

Synchronizable test sequences can be
generated using modified versions of the algo-
rithma developed for each of the methods.
Longer test sequences migth be the price to
pay.

More research is needed to apply the
test sequence selection methods to protocols

gpecified with extended state transition model
(IS0 8lb) while taking care of ©possible
parameter values of the intevactions and addi-
tional state variables.

Acknowledgements

The authors would 1like to thank E.
Cerny for his helpful critisism of the paper.

This work was supported in
NSERC of Canada.

part by the

5. REFERENCES

{Boch 82] G.v. Bochmann, et al., "Experience

with Formal Speclfications Using an

Extended State Transition Model",

IEKE Trans. on Comm., Nov. 1982.

GV Bochmann, E. Cerny,

"Protocol Assessment', Report of

DOC of Canada, Feb.1982.

"Recommendation X.25",

SGVIL/WP2 pp. 100190,

VIIL.2, Sept.l981l.

81] H. Chaigne, et al., "Un generateur
de tests pour systemes modelises
par automates d’etats finis", BIGRE
(of IRISA, Rennes, France) No.27,
Dec.1981.

78] T. S.
Design
Machines",
No.3, 1978.

79] S. Even, "Graph Algorithms",
puter Science Press 1979.

70) G. Gonenc, "A Method for the

Design of PFault Detection Experi-

menta'", IEEE Trans.on Comp. Vol

€19 Nob6, 1970.

Several papers 1in the proceedings

of 2. Int. Workshop on Protocol

Spec., Testing and Verification,

North-Holland Publ.1982.

IS0/CCITT "Draft Transport Protocol

Specification", Dec.1981.

[BoCe 82]

[CCTITT 81) CCITT

fascicle

[Chai

[Chow Chow, '"Testing Software

Modeled by TFinite State
IEEE Trans.on SkE=-4,
[Even Com~
[Gone

[INWG 82)

[ISO TP]

[ISO 81b)

[Koha

[NaTs

[Rayn

[RuWe

[SaBo

[Tarj

78]

81]

82]

82])

82)

72]

IS0 "A FDT Based on an Extended
State Transition Model" working
document of Subgroup B, 1s0
TC97/8C1l61 WGl Dec.l1981l.

Z. Kohavi, "Switching and TFinite
Automata Theory", McGraw Hill
NewYork, 1978.

S. Naito, M. Tsunoyama, '"Fault

Detection for
by Transition
of IEEE Fault
conference 1981.

D. Rayner, "A System for Testing
Protocol Implementations"", in (INWG
82) , also to be published in Com=~
puter Networks.

R. Rubin, C.H. West, "An Improved
Protocol Validation Technique',
Computer Networks, May 1982.

Sequential Machines
Tours'", Proceedings
tolerant computing

B, Sarikaya, G.v. Bochmann, "Sonme
Experience with Test Sequence
Generation for Protocols™, in IRWG
82.

R. Tarjan, '"Dept-First Search and
Linear Graph Algorithms", SIAM J.
Computing, Vol 1, No 2, 1972.

Test Synchronization

K Active Tester) Qe e e e > | (Test Responder)
R
T
Protocol to be Tested ! (Implementation
Qo i i e > under Test)
I (layer N)
Layer 1 Layer 1

a)An architecture for testing a (N)-layer protocol iuplementation
in the context of the OSI Reference Model.

TI

b)Basic Interaction Model of the test architecture in (a)
Figure l1.Test Architecture and its Interaction Model

1 R.T Creq 3 T.CC 4 R.T_Dreq 1 T.CR 2 RIT_Dreq ! T.CGC 1 T.DT 1
T.CR R.T_Cconf T.N_Dreq R.T _Cind ' T.DR - -
T.DR ! T.CR 2 R.T Cresp 4 R.T_DTreq 4 T.CR 1 T.CR 2 R.T_Cresp 4

- R.T_Cind T.CC T.DT T.ERR R.T_Cind T.CC
T.DT 4 T.N_Rind 1 R.T Creq 3 T.DT 1 T.CR 2 R.T_Cresp 4

R.T DTind T.T_Dind T.CR - R.T_Cind T.CC

T.N Dind 1 R.T_Creq 3 7.7 1 T.CR 2 R.T_Cresp 4
R.T_Dind T.CR K.y Divd,T.N_Dregq R.T_Cind T.CC

T.DR 1 T.CR 2 T.CR 1 T.CR 2 T.CC 1 T.CR 2 T.pT 1

T.N_Dreq R.T Cind T.ERR R.T ¢ind T.ERR R.T _Cind T.ERR

T.CR 2 T.DR 1
R.T_Cind T.ERR

Figure 3b.Synchronlzable transition tour for the transport protocol

126

CR/T_Cind

T Dreq/DR,
CR7ERR,
CC/ERR,

DT /ERR,
DR/ERR

AN
N

T_Cresp/CC

P

¢¢/-,n1/-,DR/-

DR/T_Dind,N_Dreg

T Dreq/N_Dreq,
CR/ERR,
DR/N_Dregq,

/

N _Dind/T DPirnd,
— — _—
CC/T _Cconf

N*Rind/T~?iii////,

4 &
¥:Z:)T_DTreq/DT,DT/T_DTind

Netation for Input Events
From Tester

GR Connect_request PDU

cC Connect_Confirm PDU

DT Data_Request PDU

DR Disconnect_Request PDU

N_Dind Network _Disconnect_ Ind

From Responder
T _Creq T_Connect_Request
T Dreq T_Disconnect_Request
T _Cresp T Connect_Response
T_DTreq T_Data_Request
lcation

N_Rind Network_Reset_Indication

Notation for Output Events
To Tester

ERR Erxor PDU

N_Dreq Network _Disconnect_Req

ccC Connect_Confirm PDU
DT Data_Request PDU
DR Disconnect Request PDU

N_Dind N_Disconnect_Indicatio
N_Rind N_Reset_Indication

Figure 2.Finite state machine

To Responder
T Cind T_Connect_Indication
T_Dind T _Disc_Indication
T Cconf T _Connect_Confirm
T_DTind T_Data_Indication

uest

n

for the class-0 transport protocol

127

ITRIRRIR,RITRIRSIRSIT

RIT RITRIR pITRIRGIT o
gIR RIRRLT pIRITGIT pIRGITGIR pIRpITGITGIR

RITGIT RITGITRIR pITGITPIRGIT ~pITITRIRGIR pITGITy IRGIRGTT
RITgIR .

RIRGIT B

RIRGIR gIRGIRRIT pIRGIRRITGIT RIRGIRRITGIR pIRGIRRITGITSIR
RITGITIR .

RIRGIRGIT .

(a) (b)

Table? .List of Basic transitions(a) and nonsynchronizable psirs of

transitions(b) for.an Implcmentation(l)

1 T.CR 2 R.T Dreq 1 T.C¢C 1 T.DT 1 T.DR 1 T.CR 2 T.CR 1
R.T_Cind T.DR - - - R.T_Cind T.ERR
3
R.T_Creq 3 T.DT 1 T.CR 2 R.T Cresp & R.T_DTreq 4 T.DT
T.CR T.ERR R.T_Cind T.CC T.DT R.T_DTind
R.T_Dreq 1 T.CR 2 T.CC 1 T.CR 2 T.DT 1 T.CR 2
T.N_Dreq R.T_Cind T.ERR R.T_Cind T.ERR R.T_C1ind
*
T.DR 1 R.T Creq 3 T-.DR 1 R.T_Creq 3 T.CC 4
T.ERR T.CC ' R.T_Dind,T.N_Dreq T.CC R.T_Cconf
T.CR 1 T.CR 2 R.T Cresp 4 T.DR 1 T.CR 2 R.T Cresp
T.ERR R.T_Cind T.CC T.N_Dreq R.T_Cind T.CC
T.CR 2 R.T_Cresp 4 T.N_Rind 1
R.T Dind T.CC R.T_Dind

Notation for Transitions:

Start State Input Initiating Side.Input Primitive Final State
Qutput Receiving Side.Output Primitive

"%""s are used to indicate nonsynchronizable transitions.

Figure 3a.A transition tour for the transport protocol

128

