
SYNCHRONIZATION ISSUES IN PROTOCOL TESTIN G

Behcet SARIKAY A

McGill Universit y

School of Computer Scienc e

Montreal, P .Q . Canada, H3A 2K6

Gregor v . BOCHMANN

University de Montrea l

Departement d'I .R .O .

Montreal, P .Q . Canada, H3C 3J7

ABSTRAC T

Protocol testing for the purpose o f
certifying the implementation ' s adherence to

the protocol specification can be done with a n

architecture which includes a remote Teste r
and a local Responder processes generatin g
specific input stimuli called test sequences .

It is possible to adapt test sequence genera-
tion methods of finite state machines, namel y

transition tour, characterization and checkin g

sequence methods to generate test. sequence s
for protocols specified as incomplete finite

state machines . For certain test sequences ,

the Tester or Responder processes are force d

to consider the timing of an interaction in

which they have not taken part ; these tes t

sequences are called nonsynchroniaable .

	

Th e

three test sequence generation algorithms ar e

modified

	

to

	

obtain

	

eynchronizable

	

tes t

sequences . Checking the protocol designs fo r

intrinsic synchronization problems is als o

discussed .

1 . INTRODUCTION

	

Protocol

	

implementation

	

assessmen t

methods are used to determine that a par -

ticular protocol implementation (in th e
following simply called "Implementation " o r

"I") adheres to the specification of th e

protocol . There seems to be general agreemen t

on a general architecture to be used for test-
ing one or more layers of the OSI protoco l

hierarchy[Rayn 82, BoCe 82, INWG 82] : A remot e

tester(also called "Active Tester " , "Tester "

or "T " in short) and a supplementary loca l

tester (also called "Test Responder " ,

" Responder " or "R " in short) directly con-

nected to the implementation, and playing th e

role of a protocol .

Permission to copy without fee all or part of this material is grante d

provided that the copies are not made or distributed for direc t

commercial advantage, the ACM copyright notice and the title of th e

publication and its date appear, and notice is given that copying is b y

permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission .

© 1983 ACM 0 .89791-089.3/83/0300 . 0121 $00.75

This paper addresses the problem o f
selecting

	

test

	

sequences

	

for

	

protocol

implementation assessment .

	

Assuming finit e
state machine models for protocol specifica-
tion,

	

methods developed for finite stat e
machines implemented in hardware [Koha 78 ,

NaTs 81] and software [Chow 78]

	

can be
applied to the selection of test sequences fo r

protocols, as reported earlier[SaBo 82] . I n

the context of the proposed test architecture ,
however, certain problems of synchronization
between the tester and the responder ma y

arise .

The paper first gives a short review o f
the straightforward application [SaBo 82] o f

three finite state test sequence selectio n
methods[NaTs 81, Chow 78, Koha 78] to protoco l
implementation assessment, and then explain s

in section 2 the nature of the possibl e
synchronization problems . Section 3 discusse s
algorithms for selecting test sequence s
without synchronization problems, which ar e
called in the following synchronizable . Some

protocol examples are also given for which n o
complete synchronizable test sequence exists .

2 . Synchronization Problems of Test Sequence s

Test sequences reported in [SaBo 82]
were generated with the assumption that Teste r
and Responder reside on the same machine . In
the architecture of figure la, Tester an d

Responder functions are distributed over tw o
sites

	

and

	

the

	

two

	

processes

	

progres s
asynchronously . It is assumes in this pape r
that they are synchronized with one anothe r

only indirectly through the interactions wit h
the Implementation under test .

This section contains a brief review o f

test sequence selection methods and theoreti-
cal considerations on the detection o f
synchronization problems .

2 .1 . Test Sequence Generation for Protocol s

2 .1 .1 . Transition Tour Method

An input sequence starting with th e

initial state and covering all transition s

defined in the protocol specification i s
called a transition tour[NaTs 81] (usually the

121

specification defines an incompletel y

specified machine as in figure 2) . A transi -

tion tour for the Transport protocol [ISO TP]

is shown in figure 3a .

2 .1 .2 .[W-method]-Characterization Sequences

A characterization set (also called

W-set) of a finite state machine consists o f

input sequences that can distinguish betwee n

the behaviors of every pair of states, . A

set P consists of input sequences that tak e

the machine to any of its states from th e
initial state, also it contains all thes e

sequences concatenated with all possibl e

inputs from these states . A characterization
sequence is the concatenation of the two set s

of sequences, P and W . Each sequence in P . W

(. stands for concatenation) is applie d
starting with the initial state, hence a

return to initial state is necessary afte r

each sequence .

	

These transfer sequences ar e

called resets .

	

(The set P defines a testin g

tree) .

2 .1 .3 .

	

[D-Method]-Checking Sequences

A distinguishing sequence (in short DS)

is an input sequence for which the outpu t
sequence produced by the machine is differen t

for each initial state . A checking sequenc e

consists of two parts : first a state recogni-
tion part and the a transition checking part .

The state recognition part starts with th e

initial state and displays the response of th e

machine to the sequence DS . DS for the pur-

pose of identifying the states both prior an d

after the application of DS . In the transi-
tion checking part the graph defined as :

TC = Ux i . DS

where U stands for set union and the x ar e
the machine transitions to be checked-, i s

traversed . Transfer sequences are included i n

both parts also in between the parts whenever
necessary to provide continuity .

2 .2 . Basic Interaction Model

The Implementation, Tester an d
Responder, shown in figure la, are modelled a s
processes each represented as a finite--stat e

machine that communicate by exchanging mes-

sages through FIFO queues, as shown in figur e
lb .

	

The Tester and Responder may send or
receive a message to/from the Implementation

when they execute a state transition . I can
receive a message from T or R when it execute s
a state transition or it can send a message t o

one or both of T or R after receiving a mes -

sage from one of them . The system has a

predefined initial state with all queues empt y

and all three processes in their initia l

states .

2 .2 .1 . Basic Interaction Sequences (BIS)

A sequence of transitions of th e

Implementation, Teste-r and Responder defines a
transition sequence for each process . In the
following, abstraction is made from the par-

ticular transitions, only the informatio n
whether an input is received (R) or an output

is sent (5) is recorded, and over which FIF O

queue . Such an abstracted sequence is calle d
basic	 transition [RuWe 82] .

	

The individua l

interactions, i .e .

	

sends and receives, ar e

called basic	 interactions .

	

For example the
basic interaction corresponding to the transi-
tion in state 1 under input CR (connect -

request PDU) of the protocol of figure 2 is to
receive a message through Q TI from T and send
a message through QIR to R and hence is sai d

to correspond to the basic interaction RITS IR .

All basic interactions of process I under thi s
model are enumerated in Table la . It is note d
that some of the entries in Table la (namely

RIR , RIRSIR and RIRSIRSIT) do not occur fo r

the Transport protocol . of figure 2, but the y

may occur in other cases .

Test sequences discussed in this sectio n

are composed of transitions of process I eac h
starting in the initial state . Hence a tes t
sequence, such as the one in figure 3a, can b e

easily converted into a corresponding basi c

interaction sequence (BIS) by replacing eac h
transition by its corresponding basic interac-

tions .

From a given test sequence, it is pos-

sible to obtain BISes for T and R as well .
Since there might be some execution steps of I

that do not involve any interaction wit h
either T or R, these steps will be shown a s
in

	

the

	

corresponding

	

basic

	

interactio n
sequence . The BIS for T corresponding to a
given BIS for I can be obtained from the lat-

ter by replacing an R IT with S TI , and an 5 1 1

with RTI and an execution step not involvin g
"T" by

	

A BIS for R can be obtained in a
similar way .

2 .3 .

	

Synchronizatio n

In the following, a synchronizatio n

problem in the test sequence of figure 3a i s
first discussed as an example, and a theorem
with its corollary is stated and proved .

BISes for the three processes of figur e
lb corresponding to the first eigth transi-
tions of the test sequence of figure 3a are a s
follows :

I :RI T S IRR IR S ITR ITR ITRITRITS IRR ITS ITRIR S I T

T ;STI

	

RTI STI STI STI STI

	

STIRTI

	

RT I

R :

	

R
RI SRI

	

-

	

RRL

	

S R I

A scenario of the execution of thes e
BISes is as follows :Since the BIS for T start s
with an S, process T starts the testing . R

receives a message from I subsequent to the
message sent to I by T .

	

It responds wit h
another message .

	

Then T receives a messag e
and sends four consecutive messages .

	

Th e
first three of these are ignored by I .

	

R
receives a message as a response to the las t

122

one .

	

T sends and receives a message .

	

The

next action, by R, is to send a messag e

(marked by "u " above) . It is difficult t o
synchronize the processes in this case, sinc e

R did not take part in the last step (the "
before the S in the BIS for R indicates thi s

fact) . A possible solution to thi s
synchronization problem would be for R to know

the time period of the last step and to wai t
that much before sending . However, this is
undesirable since real time constrains ar e

difficult to realize . An error in the timing
might cause the process I to make a differen t

transition than the one expected by the tes t

sequence, resulting in an unexpected respons e
from I . Another solution would be direc t

synchronization between T and R ; but this i s
not foreseen in the testing architecture o f
figure 1 .

Theorem . Test sequences have synchronization
problems if the BISes for T and/or R have an y

sends (S) preceeded by one or more "'s .

Proof . Assume that the BIS for R has one S

preceeded by one or more "s . From Table 3a i t
is easily seen that process I should have an
interaction with process T whenever there is a

in the BIS for R . Since R has no way o f

knowing the duration of these local exchange s
R faces a synchronization problem . The proo f

can be carried out similarly for T .

Corollary . During the testing with a
synchronizable Lest sequence, the interpreta-

tion of the responses of the implementation is

unambigious and simple .

This means that the ambigious situation wher e
the Implementation has at least one message in
both of its input queues is avoided by
synchronizable test sequences because of th e
fact that the number of messages is alway s

zero in one of the queues Q TI and QRl whic h

follows from the theorem .

2 .4 Synchronizable Pairs of Transition s

Two consecutive basic transitions of I

will be called a synchronizable pair of tran-
sitions if the second transition can follo w

the

	

first

	

one

	

without

	

generating

	

a
synchronization problem . For example R

IR

followed by R IT would violate synchronizatio n
because in the corresponding BIS for proces s

T, S

	

would be preceeded by

	

Similarly R
R I

and RIRSIR cannot be followed by R IT or R ITS IT

or RITSITSIR .

	

Also R IT and RITSIT cannot b e

followed by R IR or
RIRSIR

or R
IR S IRS IT . Al l

nonsynchronizable pairs of interactions ar e
listed in Table lb .

This concept is useful for checkin g
whether a given test sequence is synchroniz-
able . It is (necessary and) sufficient tha t

any two subsequent transitions of the sequenc e
correspond to a synchronizable pair of basi c
transitions .

	

The test sequences shown in
figures 3a were derived in [SaBo 82] without

concern for possible synchronization problems .
It

	

is

	

easily

	

seen

	

that

	

they

	

contai n
synchronization problems, as indicated b y
"" s . The sequence of figure 3a contains tw o

violations, both of the type : R
IT S ITR IR S IT

which is one of the pairs listed in Table lb .
The characterization sequence given in [SaB o
82] contains four violations of the same kind .

Also the checking sequence for the Transpor t
protocol given in [SaBo 82] has three viola-
tions of this type .

All the nonsynchronizable pairs of tran-

sitions of Table lb could be encountered i n
test sequences generated for real protocol s
unless precautions are taken, as explained i n

section 3 .

2 .5 . Protocol Specifications with Intrinsi c

Synchronization Problems

For certain protocol specifications, i t

is impossible to avoid synchronization prob-
lems . Such a situation occurs in the case
that a transition p -j from state j to state k

is of one of the type s

IStatel

	

p i

	

IStatel

	

p~

	

IState l
l

	

i	 >

	

I	 >

	

I

	

k

	

l

[RIR

	

R IR S IT

	

R IR S IR

	

RIRSIRSIT]

	

and eac h

transition p i entering state j is of one o f

the types [RIT RITSIT] . Then each pair
P i 1 i

is a nonsynchronizable pair of transitions .

Therefore the execution of the transition p i
implies a synchronization problem .

	

We cal l
such a transition nonsychronizable .

	

A dual
situation exists for the case that all p i ar e

of one

	

of the types

	

[RIR, RIRSIR]
and pj o f

[R IT R IT S IT R IT S IR RITSITSIR] . We call a
state nonsynchronizable if it can only b e
reached through nonsynchronizable transitions .
For example, the state k above is such a

state .

Protocol specifications having non-
synchronizable transitions and/or states ar e
called intrinsically nonsynchronizable . It i s
clear

	

that

	

any

	

complete

	

test

	

sequenc e

generated for such specifications will carr y
synchronization problems . By inspection i t
can be seen that the Transport protocol o f
figure 2 does not have any nonsynchronizabl e
transitions hence it

	

does not have any
intrinsic synchronization problems .

IL has been shown that X .25 DTE protoco l
[CCITT 81) contains some nonsynchronizabl e

transitions .

3 . Generation of Synchronizable Test Sequence s

Each test sequence generation metho d
discussed in section 2 may give rise, for a
given protocol specification, to differen t

123

test sequences depending on the way the metho d
is implemented . It is clear from the discus-
sion of section 2 that some of these sequence s

are not applicable in the test architecture o f
figure

	

la

	

because

	

they

	

violate

	

the
synchronization rules .

	

The different method s

can be adopted to generate only synchronizabl e
test sequences . These adaptations ar e
specific to each method, as explained below .

However, the specification should be checke d
first to see if it is intrinsically non-
synchronizable . If not, one of the algorithm s

described below may be applied to obtain a
synchronizable test sequence . The basi c
approach for all these algorithms is to chec k

each new transition added to the sequence i n
order to see whether it is synchronizable with
its predecessor . This check is based on Tabl e

lb which lists all nonsynchronizable pairs o f
transitions .

3 .1 .

	

Transition Tour s

Any graph traversal algorithm such a s
the one given in [Tarj 72] can be modified t o

obtain a transition tour . Each transition t o
be added to the sequence by the algorithm i s
first checked whether it forms a synchroniz-

able pair together with the last transition o f
the sequence (using Table 1b) .

	

If it is no t
synchronizable a different transition from th e
present state is considered . If no suitabl e
transition exists from the present state, th e
selection algorithm bactracks to the previou s
state continuing the tour from there in a
different way .

	

This process continues unti l
all the

	

transitions

	

of

	

the machine

	

ar e
covered . In general, it may be necessary t o
deviate from the goal of obtaining minimu m
length sequences .

Applying such an algorithm to the Trans -
port protocol, the transition tour of figur e

3b is obtained . The length of this sequenc e
is 34, as in figure 2 ; in this case the length
is not increased .

3 .2 . Characterization Sequence s

Algorithms to find a W-set and to con-

struct a testing tree (and hence to calculat e
P . W, without resets) are given in [Chas 81] .
Any shortest path finding algorithm, such a s

the one in [Even 79], can be used for deter -
mining the resets . Synchronizable charac-
terization sequences can be obtained in thre e
steps as follows :

In Step 1, all subsequences of P . W
(without resets) are checked for synchroniza-

tion problems using a " subsequence checkin g
algorithm" which checks all pairs of consecu -

tive

	

transitions

	

in

	

a

	

sequence

	

fo r
synchronization problems, using Table lb .

	

I f
a subsequence of P . W has synchronizatio n
problems, the use of a different W set o r
testing tree P may be considered, possibl y
leading to longer sequences .

In Step 2, each subsequence of P . W i s
completed by appending a synchronizable rese t
sequence

	

using

	

a

	

backtracking

	

algorithm

similar to the one for transition tour s
explained above .

In Step 3 the subsequences obtained in
Step 2 are merged together to obtain a singl e
synchronizable test sequence . Any "concatena-
tion algorithm" could be used which puts th e
subsequences in such an order that no
synchronization problem is generated .

A

	

synchronizable

	

characterization
sequence

	

for

	

the

	

Transport

	

protocol

	

is
obtained from the same testing tree, contain -

ing 69 transitions, three more than th e
sequence of [SaBo 82] . This is due to longe r
reset sequences .

3 .3 . Checking Sequence s

Ignoring the problem of synchronization ,

an algorithm for finding a DS can be found i n
[Koha 78], and algorithms for state recogni-
tion

	

and

	

transition

	

checking

	

parts

	

ar e
reported in [Gone 70] . Shortest path algo-
rithms can be used for finding transfe r
sequences .

The following measures are proposed t o
obtain synchronizable test sequences :
(a)A syncronizable DS must be found .

	

I n
general, it may not be a minimal one .
(b)The state recognition part obtained accord-
ing to [Gone 70] is checked using the "sub-

sequence checking algorithm " mentioned above .
In case of synchronization problems, changin g
the transfer sequences should first be con-
sidered . The use of a different DS may als o
be considered .

(c)The transition checking step is checke d
with a two-part procedure . First each sub -
sequence x i . DS in the set TC as defined i n
section 2 is checked by the "subsequenc e
checking algorithm " . If one of the test s
fails a different DS should be generated, i f
it exists . In the second step, the transitio n
checking part as a whole is checked fo r
synchronization .

	

In the case of synchroniza -
tion problems,

	

a different order of th e
subsequences

	

and/or

	

different

	

transfe r
sequences should be considered .
(d)Finally, the state recognition and transi-

tion checking parts are combined using an
appropriate transfer sequence .

A synchronizable checking sequence fo r

the Transport protocol has been obtained con-
taining 3 more transitions than the sequenc e
reported in [SaBo 82] .

4 . SUMMARY and CONCLUSIONS

Test sequence generation methods (tran-
sition tours, We and D- methods) ar e

applicable to protocols specified as incom -
plete finite state machines . The transitio n
tour has a limited, the other methods hav e
full fault detection capabilities . The tran-
sition tour method is generally applicable ,
the application of the other two method s
require certain conditions, i .e . the protoco l

possessing a W-set or DS, respectively .

124

With a remote testing architecture, a s

shown in figure 1, the synchronization betwee n

the Tester and Responder modules becomes an

issue . The design of these modules i s

simplified if the selected test: sequence doe s

not have any synchronization problems . It i s

shown in section 3 that test sequences can b e

checked for synchronization problems if each

interaction of a test sequence is associate d

with Tester or Responder module .

	

Moreover ,

avoiding the synchronization problems relate s

to the design of the protocol .

	

A protocol

should

	

be

	

first

	

checked

	

for

	

intrinsi c

synchronization problems

	

and

	

modified

	

i f

necessary .

Synchronizable test sequences can b e

generated using modified versions of the algo-
rithms developed for each of the methods .
Longer test sequences migth be the price t o

pay .

More research is needed to apply th e

test sequence selection methods to protocol s

specified with extended state transition mode l

(ISO 81b] while taking care of possibl e

parameter values of the interactions and addi-
tional state variables .

Acknowledgement s

The authors would like to thank E .

Cerny for his helpful critisism of the paper .

This work was supported in part by th e

NSERC of Canada .

5 . REFERENCE S

[Boch 82] G .v . Bochmann, at al ., " Experienc e

with Formal Specifications Using a n

Extended State Transition Model " ,

IEEE Trans . on Comm ., Nov .

	

1982 .

[BoCe 82]

	

G .v .

	

Bochmann,

	

E .

	

Cerny ,

"Protocol Assessment " , Report o f

DOC of Canada, Feb .1982 .

[CCITT 81] "Recommendation

	

X .25",

	

CCITT

SGVII/WP2 pp .

	

100-140,

	

fascicl e

VIII .2, Sept .1981 .

[Chai 81] H . Chaigne, at al,, "Un generateu r

de tests pour systemes modelise s

par automates d'etats fini s" , BIGRE
(of IRISA, Rennes, France) No .27 ,

Dec .1981 .

[Chow 78] T .

	

S .

	

Chow, " Testing Softwar e

Design Modeled by Finite Stat e

Machines",

	

IEEE

	

Trans .on

	

SE-4 ,

No .3, 1978 .

[Even 79] S .

	

Even, "Graph Algorithms " , Com-

puter Science Press 1979 .

[Gone 70] G .

	

Gonenc,

	

"A Method for th e

Design of Fault Detection Experi-

ments " , IEEE Trans .on Comp .

	

Vol

C19 No6, 1970 .
[INWG 82] Several papers in the proceeding s

of 2 . Int . Workshop on Protocol

Spec ., Testing and Verification ,

North-Holland Publ .1982 .

[ISO TP]

	

ISO/CCITT "Draft Transport Protoco l

Specification " , Dec .1981 .

[ISO 81b] ISO " A FDT Based on an Extended

State Transition Model " working
document of Subgroup B, IS O
TC97/SC161 WG1 Dec .1981 .

[Koha 78] Z .

	

Kohavi, " Switching and Finit e
Automata

	

Theory " ,

	

McGraw

	

Hil l

NewYork, 1978 .
[NaTs 81] S . Naito, M . Tsunoyama, " Faul t

Detection for Sequential Machine s

by Transition Tours " , Proceeding s

of IEEE Fault tolerant computin g
conference 1981 .

[Rayn 82] D . Rayner, "A System for Testin g

Protocol Implementation s " , in (INWG

82) , also to be published in Com-
puter Networks .

[RuWe 82] R . Rubin, C .H . West, "An Improved

Protocol Validation Technique " ,
Computer Networks, May 1982 .

[SaBo 82]

	

B .

	

Sarikaya, G .v .

	

Bochmann, " Som e
Experience with Test Sequenc e

Generation for Protocols " , in INWG
82 .

[Tarj 72] R . Tarjan, "Dept-First Search an d

Linear Graph Algorithms " , SIAM J .

Computing, Vol 1, No 2, 1972 .

125

(Active Tester)
Test Synchronizatio n
------------- ---- - (Test Responder)

R

T

--------- ------

Layer 1

Protocol to be Tested 1(Implementatio n

	 under Test

	

)
I (layer N)

Layer 1

a)An architecture for testing a (N)-layer protocol implementatio n

in the context of the OSI Reference Model .

b)Basic Interaction Model of the test architecture in (a)
Figure 1 .Test Architecture and its Interaction Mode l

1 R .T_Creq 3 T .CC

	

4 R .T Dreq 1 T .CR

	

2 R :T_Dreq 1 T .CC 1 T .DT 1
T .CR

	

R.T_Cconf T .N_Dreq

	

R .T_Cind

	

T .DR

	

-

	

-

T .DR 1 T .CR

	

2 R .T_Cresp 4 R .T_DTreq 4 T .CR 1 T .CR

	

2 R .T_Cresp 4
R.T_Cind T.CC

	

T .DT

	

T .ERR

	

R .T Cind

	

T .C C

T .DT

	

4 T .N_Rind 1 R .T_Creq 3 T .DT 1 T .CR

	

2 R .T_Cresp 4
R .T DTind

	

T .T Dind

	

T .CR

	

-

	

R .T Cind

	

T.CC

T .N_Dind 1 R .T_Creq 3 I . : .'

	

1 T .CR

	

2 R .T_Cresp 4
R .T Dind

	

T .CR

	

R ., :)ird,T .N Dreq

	

R .T_Cind T .CC

T .DR

	

1 T .CR

	

2 T .CR 1 T .CR

	

2 T .CC

	

1 T .CR

	

2 T .DT 1
T .N Dreq

	

R.T_Cind T .ERR

	

R .T_Cind

	

T .ERR

	

R .T_Cind

	

T .ERR

T .CR

	

2 T .DR

	

1
R .T_Cind T .. ERR

Figure 3b .Synchronizable transition tour for the transport protoco l

	Y

R

0IQR IQT Q IT

I

126

T_Dreq/N_Dreq ,
CR/ERR ,
DR/N_Dreq ,
N_Dind/T_Dind,

	

/
N_Dind/T_Din -CC/T~Ccon f

T_Cresp/C C

Notation for Input Event s
From Tester

	

From Responde r
GR

	

Connect_ request PDU

	

T_Creq T__Connect_Reques t
CC

	

Connect_ Confirm PDU

	

T_Dreq T_Disconnect_Reques t
DT

	

Data_Request PDU

	

T_Cresp T_Connect__Respons e
DR

	

Disconnect_Request PDU

	

T_DTreq T_Data_Reques t
N_Dind Network_Disconnect Indicatio n
N _Rind Network Reset Indication

Notation for Output Event s
To Tester

	

To Responder.
ERR

	

Error PDU

	

T_Cind T_Connect_Indicatio n
N_Dreq Networ.k_Disconnect_Request

	

T_Dind T_Dicc__Indicatio n
CC

	

Connect Confirm PDU

	

T_Cconf T Connect_Confir m
DT

	

Data_Request PDU

	

T_DTind T_Data_Indicatio n
DR

	

Disconnect_Request PD U
N_Dind N_Disconnect_Indicatio n
N _Rind N^Reset Indicatio n

Figure 2 .Finite state machine for the class-0 transport protoco l

127

RIT

	

RIRRIR ,R ITRIRS IT ,RITR IRR IR ,RIT R IR S IR' S IT

RIR

	

RIRR IT ,R IRR IT S IT ,RIRR
IT S IR ,R IRR IT S IT S IR

RIT S IT

	

R IT S IT R I R ,RIT S ITRIR S IT , RIT SITRIRS IR ,RITS ITR IRS IR S I T

RIRS IR

RIR S IT

R IR S IR

	

R IR S I RR IT RI R S I RRIT S I T , R I R S IRRIT S IR RIR S I R R IT S I TSIR

RIT S IT S IR

R IR S IRS IT

(a)

	

(b)

Tablet .List of Basic transitions(a) and nonsynchronizable prirs o f

transitions(b) for, an Implcmentation(I)

1 T .CR

	

2 R.T_Dreq 1 T .CC 1 T .DT I T .DR 1 T .CR

	

2 T .CR 1
R.T_Cind T.DR _

	

R.T_Cind
*

R.T_Creq 3 T .DT

	

1 T .CR

	

2 R .T_Cresp 4 R .T_DTreq 4 T .DT

	

1
T .CR

	

T .ERR

	

R .T_Cind

	

T .CC

	

T .DT

	

R .T_DTind

R .T—Dreq 1 T .CR

	

2 T .CC

	

1 T .CR

	

2 T .DT

	

1 T .CR

	

2
T .N_Dreq

	

R .T_Cind

	

T .ERR

	

R .T_Cind

	

T .ERR

	

R .T Cind
*

T .DR

	

1 R .T_Creq 3 T .DR

	

1 R .T_Creq 3 T .CC

	

4
T .ERR

	

T .CC

	

R .T Dind,T .N_Dreq

	

T .CC

	

R.TCconf

T .CR

	

1 T .CR

	

2 R .T_Cresp 4 T .DR

	

1 T .CR

	

2 R.T_Cresp 4
T .ERR

	

R .T_Cind

	

T .CC

	

T .N_Dreq

	

R .T_Cind

	

T .CC

T .CR

	

2 R .T_Cresp 4 T .N_Rind 1
R .T Dind

	

T .CC

	

R.T Dind

Notation for Transitions :
Start State

	

Input Initiating Side .Input Primitive

	

Final State
Output Receiving Side .Output Primitiv e

"*"s are used to indicate nonsynchronizable transitions .

Figure 3a .A transition tour for the transport protoco l

128

